Color reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas

نویسندگان

  • Antonios Atsalakis
  • Nikos Papamarkos
چکیده

A new method for color reduction in a digital image is proposed, which is based on the development of a new neural network classifier and on a new method for Estimation of the Most Important Classes (EMIC). The proposed neural network combines the features of the well-known Growing Neural Gas (GNG) and the Kohonen Self-Organized Feature Map (KSOFM) neural networks. We call the new neural network Self-Growing and Self-Organized Neural Gas (SGONG). This combination produces a new neural network with outstanding features. The proposed technique utilizes the GNG mechanism of growing the neural lattice and the KSOFM leaning adaptation mechanism. Besides, introducing a number of criteria that have an effect on inserting or removing neurons, it is able to automatically define the number of the created neurons and their topology. Moreover, applying the EMIC method, the produced classes can be filtered and the most important classes can be found. The combination of SGONG and EMIC results in retaining the isolated and significant colors with the minimum number of color classes. The above techniques are able to be fed by both color and spatial features. For this reason a similarity function is used for vector comparison. The method is applicable to any type of color images and it can accommodate any type of color space. r 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

Color reduction by using a new self-growing and self-organized neural network

A new method for the reduction of the number of colors in a digital image is proposed. The new method is based on the developed of a new neural network classifier that combines the advantages of the Growing Neural Gas (GNG) and the Kohonen Self-Organized Feature Map (SOFM) neural networks. We call the new neural network: Self-Growing and SelfOrganized Neural Gas (SGONG). Its main advantage is t...

متن کامل

Spectral Estimation of Printed Colors Using a Scanner, Conventional Color Filters and applying backpropagation Neural Network

Reconstruction the spectral data of color samples using conventional color devices such as a digital camera or scanner is always of interest. Nowadays, multispectral imaging has introduced a feasible method to estimate the spectral reflectance of the images utilizing more than three-channel imaging. The goal of this study is to spectrally characterize a color scanner using a set of conventional...

متن کامل

On estimation of the number of image principal colors and color reduction through self-organized neural networks

A new technique suitable for reduction of the number of colors in a color image is presented in this article. It is based on the use of the image Principal Color Components (PCC), which consist of the image color components and additional image components extracted with the use of proper spatial features. The additional spatial features are used to enhance the quality of the final image. First,...

متن کامل

Adaptive color reduction

The paper proposes an algorithm for reducing the number of colors in an image. The proposed adaptive color reduction (ACR) technique achieves color reduction using a tree clustering procedure. In each node of the tree, a self-organized neural network classifier (NNC) is used which is fed by image color values and additional local spatial features. The NNC consists of a principal component analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2006